聚焦碳中和产业,服务碳中和产业,引领碳中和产业。
——工作宗旨
描述
副院长 — 谭歆
描述
描述
       研究员,温州大学瓯江特聘教授,温州大学碳中和技术创新研究院副院长。入选浙江省“海外高层次人才引进”计划-创新长期项目、温州市“瓯越海智”计划。担任Wiley旗下高水平期刊《Carbon Neutralization》编委、《Exploration》学术编辑。主要从事计算化学和计算材料学方面的研究工作,特别是电催化以及相关化学储能与转化反应(燃料电池、锂/钠离子电池)的理论研究。在Nat. Catal.、Nat. Commun.、Energy Environ. Sci.、Angew. Chem. Int. Ed.等国际高水平期刊发表论文100余篇(第一/通讯作者论文45篇),论文被SCI引用4400 余次,H 指数为39。6篇入选ESI高被引论文。
个人简介
温州大学碳中和技术创新研究院副院长

谭  歆



工作经历
教育经历
2005 - 2008       博士       中山大学,物理科学与工程技术学院
2002 - 2005       硕士       湘潭大学,材料与光电物理学院
1999 - 2002       本科       湘潭大学,材料与光电物理学院
03/2023 – 至今              温州大学碳中和技术创新研究院,副院长
03/2023 – 至今              温州大学化学与材料工程学院,研究员,瓯江特聘教授
10/2017 - 03/2023        澳大利亚国立大学,高级研究员
09/2014 - 09/2017        澳大利亚新南威尔士大学,研究员
04/2013 - 04/2014        美国波多黎各大学,博士后
04/2011 - 04/2013        美国阿贡国家实验室,博士后
08/2009 - 03/2011        德国马普学会弗里茨•哈伯研究所,洪堡学者
07/2008 - 07/2009        湘潭大学,讲师
代表性论文

ORCID: https://orcid.org/0000-0001-9515-2346

1.L. Gao,   F. Bao,   X. Tan* (通讯作者),   M. Li,   Z. Shen,   X. Chen,   Z. Tang,   W. Lai,   Y. Lu,   P. Huang,   C. Ma,   S. C. Smith,   Z. Ye,   Z. Hu,  H. Huang, Engineering a Local Potassium Cation Concentrated Microenvironment toward Ampere-Level Current Density Hydrogen Evolution Reaction. Energy Environ. Sci. 16, 285-294 (2023) 

2.W. Ren, X. Tan (共同一作), C. Jia, A. Krammer, Q. Sun, J. Qu, S. C. Smith, A. Schueler, X. Hu, C. Zhao. Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy-Efficient CO2 Electroreduction. Angewandte Chemie International Edition 61, e202203335 (2022) 

3.Y. Zhao, P. V. Kumar, X. Tan, X. Lu, X. Zhu, J. Jiang, J. Pan, S. Xi, H. Y. Yang, Z. Ma, T. Wan, D. Chu, W. Jiang, S. C. Smith, R. Amal, Z. Han, X. Lu. Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nature Communications 13, 2430 (2022) 

4.A. R. Poerwoprajitno, L. Gloag, J. Watt, S. Cheong , X. Tan, H. Lei, H. A. Tahini, A. Henson, B. Subhash, N. M. Bedford, B. Miller, P. B. O’Mara, T. M. Benedetti, D. L. Huber, W. Zhang, S. C. Smith, J. J. Gooding, W. Schuhmann, R. D. Tilley. A single Pt atom on Ru nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nat. Catal. 5, 231 (2022) 

5.K.-H. Wu, Y. Liu, X. Tan, Y. Liu, Y. Lin, X. Huang, Y. Ding, B.-J. Su, B. Zhang, J.-M. Chen, W. Yan, S. C. Smith, I. R. Gentle, S. Zhao. Regulating electron transfer over asymmetric low-spin Co(II) for highly selective electrocatalysis. Chem. Catal. 2, 372 (2022).

6.L. Gao, Z. Yang, T. Sun, X. Tan, W. Lai, M. Li, J. Kim, Y. F. Lu, S. I. Choi, W. Zhang, et. al. Autocatalytic Surface Reduction‐Assisted Synthesis of PtW Ultrathin Alloy Nanowires for Highly Efficient Hydrogen Evolution Reaction. Advanced Energy Materials, https://doi.org/10.1002/aenm.202103943 (2022) 

7.L. Gao, T. Sun, X. Tan (共同一作), M. Liu, F. Xue, B. Wang, J. Zhang, Y.F. Lu, C. Ma, et. al. Trace Doping of Early Transition Metal Enabled Efficient and Durable Oxygen Reduction Catalysis on Pt-based Ultrathin Nanowires. Applied Catalysis B: Environmental 303, 120918 (2021) 

8.C. Jia, X. Tan (共同一作), Y. Zhao, W. Ren, Y. Li, Z. Su, S.C. Smith, C. Zhao. Sulfur‐dopants promoted electroreduction of CO2 over coordinatively unsaturated Ni‐N2 moieties. Angew. Chem. Int. Ed. 60,23342–23348 (2021) 

9.Lin Ju, X. Tan (共同一作), Xin Mao, Yuantong Gu, Sean Smith, Aijun Du, Zhongfang Chen, Changfeng Chen and Liangzhi Kou. Controllable CO2 Electrocatalytic Reduction via Fer-roelectric Switching on Single Atom Anchored In2Se3 Monolayer. Nature Communications 12, 5128 (2021) 

10.Xiaofeng Zhu, X. Tan (共同一作), Kuang-Hsu Wu, Shu-Chih Haw, Chih-Wen Pao, Bing-Jian Su, Junjie Jiang, Sean. C. Smith, Jin-Ming Chen, Rose Amal, Xunyu Lv. Intrinsic ORR Activity Enhancement of Pt Atomic Sites by Engineering d-Band Center via Local Coordination Tuning. Angewandte Chemie International Edition 60, 21911-21917 (2021)

11.W. Ren, X. Tan (共同一作), J. Qu, S. Li, J. Li, X. Liu, S. P. Ringer, J. M. Cairney, et. al. Isolated copper–tin atomic interfaces tuning electrocatalytic CO2 conversion. Nature Communications 12, 1449 (2021) 

12.P. Lu, X. Tan (共同一作), H. Zhao, Q. Xiang, K. Liu, X. Zhao, X. Yin, et. al. Atomically Dispersed Indium Sites for Selective CO2 Electroreduction to Formic Acid. ACS nano 15, 5671-5678 (2021) 

13.X. Tan*, H. Tahini, S. Smith*. Unveiling the role of carbon oxidation in irreversible degradation of atomically-dispersed FeN4 moieties for proton exchange membrane fuel cells. Journal of Materials Chemistry A 9, 8721-8729 (2021) (IF: 11.3)

14.J Guo, L Gao, X. Tan (共同一作), et. al. Template‐Directed Rapid Synthesis of Pd‐Based Ultrathin Porous Intermetallic Nanosheets for Efficient Oxygen Reduction. Angewandte Chemie International Edition 60, 10942 (2021) 

15.L Zhang, S Jiao, X. Tan (共同一作), Y Yuan, Y Xiang, YJ Zeng, J Qiu, P Peng, et. al. Theory-guided construction of electron-deficient sites via removal of lattice oxygen for the boosted electrocatalytic synthesis of ammonia. Nano Research 14, 1457 (2021).

16.Y. Zhao, X. Tan (共同一作), W. Yang, C. Jia, X. Chen, W. Ren, S. C. Smith, C. Zhao. Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO2 Reduction. Angewandte Chemie International Edition 59, 21493 (2020). 

17.Y. Li, X. Tan (共同一作), W. Yang, X. Bo, Z. Su, T. Zhao, S. C. Smith, C. Zhao. Vanadium Oxide Clusters Decorated Metallic Cobalt Catalyst for Active Alkaline Hydrogen Evolution. Cell Reports Physical Science 1, 100275 (2020).

18.Y. Li, X. Tan (共同一作), R. K. Hocking, X. Bo, H. Ren, B. Johannessen, S. C. Smith, C. Zhao. Implanting Ni-O-VOx sites into Cu-doped Ni for low-overpotential alkaline hydrogen evolution. Nature Communications 11, 2720 (2020). 

19.Q. Zhang, X. Tan, N. M Bedford, Z. Han, L. Thomsen, S. Smith, R. Amal, X. Lu. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nature Communications 11, 4181 (2020). 

20.Y. Li, X. Tan (共同一作), H. Tan, H. Ren, S. Chen, W. Yang, S. C. Smith, C. Zhao. Phosphine vapor-assisted construction of heterostructured Ni2P/NiTe2 catalysts for efficient hydrogen evolution. Energy Environ. Sci. 13, 1799-1807 (2020). 

21.W. Ren, X. Tan (共同一作), X. Chen, G. Zhang, K. Zhao, W. Yang, C. Jia, Y. Zhao, S. C. Smith, C. Zhao. Confinement of Ionic Liquids at Single-Ni-Sites Boost Electroreduction of CO2 in Aqueous Electrolytes. ACS Catalysis (2020) 10, 13171-13178 (2020). 

22.Y. Cui, X. Tan, K. Xiao, S. Zhao, N. M. Bedford, Y. Liu, Z. Wang, K. H. Wu, J. Pan, et. al. Tungsten Oxide/Carbide Surface Heterojunction Catalyst with High Hydrogen Evolution Activity. ACS Energy Letters 5, 3560-3568 (2020). 

23.X. Tan (共同一作), H. A. Tahini, S. C. Smith. Understanding the high activity of mildly reduced graphene oxide electrocatalysts in oxygen reduction to hydrogen peroxide. Materials Horizons 6, 1409-1415 (2019).  

24.W. Ren, X. Tan (共同一作), W. Yang, C. Jia, S. Xu, K. Wang, S. C. Smith, C. Zhao. Isolated Diatomic Ni‐Fe Metal‐Nitrogen Sites for Synergistic Electroreduction of CO₂. Angewandte Chemie International Edition 58, 6972-6976 (2019). 

25.X. Lu, X. Tan (共同一作), Q. Zhang, R. Daiyan, J. Pan, R. Chen, H.A. Tahini, D.W. Wang. Versatile electrocatalytic processes realized by Ni, Co and Fe alloyed core coordinated carbon shells. Journal of Materials Chemistry A 7, 12154-12165 (2019). 

26.Y. Li, X. Tan (共同一作), S. Chen, X. Bo, H. Ren, S. C. Smith, C. Zhao. Processable Surface Modification of Nickel-Heteroatom (N, S) Bridge Sites for Promoted Alkaline Hydrogen Evolution. Angew. Chem. 58, 461–466 (2019). 

27.X. Li, X. Tan* (通讯作者), Q. Xue, S. Smith*. Charge-controlled switchable H2 storage on conductive borophene nanosheet. International Journal of Hydrogen Energy 44, 20150-20157 (2019).

28.X. Zhu, X. Tan, K. H. Wu, C. L. Chiang, Y. C. Lin, Y. G. Lin, D. W. Wang, S. Smith. N, P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. Journal of Materials Chemistry A 7, 14732-14742 (2019). 

29.R. Daiyan, X. Lu, X. Tan (共同一作), X. Zhu, R. Chen, S. C. Smith, R. Amal. Antipoisoning Nickel–Carbon Electrocatalyst for Practical Electrochemical CO2 Reduction to CO. ACS Applied Energy Materials 2, 8002-8009 (2019).

30.C. Jin, X. Tang, X. Tan, S. C. Smith, Y. Dai, L. Kou. A Janus MoSSe monolayer: a superior and strain-sensitive gas sensing material. Journal of Materials Chemistry A 7, 1099-1106 (2019). 

31.R. Daiyan, X. Tan (共同一作), R. Chen, W. H. Saputera, H. A. Tahini, E. Lovell, Y. H. Ng, S. C. Smith, L. Dai, X. Lu, R. Amal, Electroreduction of CO2 to CO on a Mesoporous Carbon Catalyst with Progressively Removed Nitrogen Moieties. ACS Energy Letters 3, 2292-2298 (2018). 

32.X. Tan, H. A. Tahini and S. C. Smith. Computational materials design for electrocatalytically switchable gas capture and/or storage. Energy Storage Materials 8, 169–183 (2017). 

33.X. Tan, H. A. Tahini and S. C. Smith. p-Doped Graphene/Graphitic Carbon Nitride Hybrid Electrocatalysts: Unraveling Charge Transfer Mechanisms for Enhanced Hydrogen Evolution Reaction Performance. ACS Catal. 6, 7071–7077 (2016). 

34.H. A. Tahini, X. Tan, W. Zhou, Z. Zhu, U. Schwingenschlögl and S. C. Smith. Sc and Nb dopants in SrCoO3 modulate electronic and vacancy structures for improved water splitting and SOFC cathodes. Energy Storage Materials 9, 229-234 (2017)

35.H. A. Tahini, X. Tan, U. Schwingenschlögl and S. C. Smith. Formation and Migration of Oxygen Vacancies in SrCoO3 and Their Effect on Oxygen Evolution Reactions. ACS Catal. 6, 5565–5570 (2016). 

36.X. Tan, H. A. Tahini, H. Arandiyan, S. C. Smith, Electrocatalytic Reduction of Carbon Dioxide to Methane on Single Transition Metal Atoms Supported on a Defective Boron Nitride Monolayer: First Principle Study. Advanced Theory and Simulations 2, 1800094 (2019). 

37.X. Tan, H. A. Tahini and S. C. Smith. Borophene as a Promising Material for Charge-Modulated Switchable CO2 Capture. ACS Appl. Mater. Interfaces 9, 19825−19830 (2017).

38.X. Tan, H. A. Tahini and S. C. Smith. Charge-modulated CO2 capture. Current Opinion in Electrochemistry 4, 118-123 (2017).

39.X. Tan, H. A. Tahini and S. C. Smith, Conductive Boron-Doped Graphene as an Ideal Material for Electrocatalytically Switchable and High-Capacity Hydrogen Storage. ACS Appl. Mater. Interfaces 8, 32815–32822 (2016).

40.X. Tan, H. A. Tahini, P. Seal and S. C. Smith, First-Principle Framework for Total Charging Energies in Electrocatalytic Materials and Charge-Responsive Molecular Binding at Gas−Surface Interfaces. ACS Appl. Mater. Interfaces 8, 10897−10903 (2016).

41.X. Tan, H. A. Tahini and S. C. Smith. Materials Design for Electrocatalytic Carbon Capture. APL Mater. 4, 053202(2016). 

42.X. Tan, H. A. Tahini and S. C. Smith. Hexagonal Boron Nitride and Graphene In-Plane Heterostructures: An Experimentally Feasible Approach to Charge-Induced Switchable CO2 Capture. Chem. Phys. 478, 139-144 (2016). 

43.X. Tan, H. A. Tahini and S. C. Smith. Charge-modulated permeability and selectivity in graphdiyne for hydrogen purification, Mol. Simul. 42, 573–579 (2016). 

44.X. Tan, L. Kou, H. A. Tahini and S. C. Smith. Charge Modulation in Graphitic Carbon Nitride: An Electrocatalytically Switchable Approach to High-Capacity Hydrogen Storage. ChemSusChem 8, 3626−3631(2015).

45.X. Tan, L. Kou and S. C. Smith. Layered Graphene–Hexagonal Boron Nitride Nanocomposites: An Experimentally Feasible Approach to Charge–Induced Switchable CO2 Capture. ChemSusChem 8, 2987–2993(2015).  

46.X. Tan, L. Kou, H. A. and S. C. Smith. Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture. Sci. Rep. 5, 17636 (2015).

47.X. Tan, C. R. Cabrera and Z. Chen. Metallic BSi3 Silicene: A Promising High Capacity Anode Material for Lithium-Ion Batteries. The Journal of Physical Chemistry C 118, 25836 (2014).

48.X. Tan, F. Li and Z. Chen. Metallic BSi3 Silicene and Its One-Dimensional Derivatives: Unusual Nanomaterials with Planar Aromatic D6h Six-Membered Silicon Rings. The Journal of Physical Chemistry C 118, 25825 (2014). 

49.X. Tan, P. Jin and Z. Chen. With the Same Clar Formulas, Do the Two-dimensional Sandwich Nanostructures X-Cr-X (X=C4H, NC3 and BC3) Behave Similarly? Phys. Chem. Chem. Phys. 16, 6002 (2014).

50.X. Tan and P. Zapol, Regioselective Oxidation of Strained Graphene for Controllable Synthesis of Nanoribbons, The Journal of Physical Chemistry C 117, 19160 (2013). 

51.X. Tan and P. Zapol, First-principles calculations of surfactant-assisted growth of polar CaO(111) oxide film: The case of water-based surfactant, Physical Review B 86, 045422 (2012).

52.X. Tan, J. X. Zhong and G. W. Yang, Growth mechanism of ring shaped quantum nanostructures self-assembly upon droplet epitaxy, Surface Review and Letters 19, 1250029 (2012).

53.X. Tan and G. W. Yang, Supramolecular Nanowires Self-Assembly on Stepped Ag(110) Surface, The Journal of Physical Chemistry C 113, 19926 (2009).

54.X. Tan and G. W. Yang, Temperature-dependent surface alloying in Au/Ni (110), Journal of Alloys and Compounds 467, 428 (2009).

55.X. Tan, X. L. Li and G. W. Yang, Theoretical strategy for self-assembly of quantum rings, Physical Review B 77, 245322 (2008).

56.X. Tan and G. W. Yang, Physical mechanisms of hydrogen-enhanced amorphous-to-crystalline transformation of silicon upon plasma-enhanced chemical vapor deposition, Applied Physics Letters 93, 061902 (2008).

57.X. Tan and G. W. Yang, Catalytic Bond-Breaking Selectivity in the Ethylene Decomposition on Ni Surfaces: Kinetic Monte Carlo Simulations, The Journal of Physical Chemistry C 112, 4219 (2008).

58.X. Tan, M.Q. Cai and G. W. Yang, Step ordering induced by nonplanar patterning surfaces, Journal of Physics: Condensed Matter 20, 095003 (2008).

59.X. Tan, G. Ouyang and G. W. Yang, Roughing titanium quantum wire on patterned monohydride diamond (001) surface, The Journal of Chemical Physics 126, 184705 (2007).

60.X. Tan, G. Ouyang and G. W. Yang, Surface smoothing of amorphous silicon thin films: Kinetic Monte Carlo simulations, Physical Review B 73, 195322 (2006).

61.X. Tan, G. Ouyang and G. W. Yang, Ordering Fe nanowire on stepped Cu (111) surface, Applied Physics Letters 88, 263116 (2006).

62.X. Tan, Y. C. Zhou and X. J. Zheng, Pulsed-laser deposition of polycrystalline Ni films: a three dimensional kinetic Monte Carlo simulation, Surface Science 588, 175 (2005).

63.X. Tan, Y. C. Zhou and X. J. Zheng, Dependence of morphology of pulsed-laser deposited coatings on temperature: a kinetic Monte Carlo simulation, Surface and Coatings Technology 197, 288 (2005).

64.X. Tan, Y. C. Zhou and X. J. Zheng, Comparison of islands formation between pulsed-laser deposition and molecular-beam epitaxy: a kinetic Monte Carlo simulation, Surface Review and Letters 12, 611 (2005).